Highly tolerant likelihood - free Bayesian inference : An 1 adaptive non - linear heteroscedastic model
نویسنده
چکیده
13 Approximate Bayesian inference on the basis of summary statistics is well14 suited to complex problems for which the likelihood is either mathematically 15 or computationally intractable. However the methods that use rejection suf16 fer from the curse of dimensionality when the number of summary statistics 17 is increased. Here we propose a machine-learning approach to the estimation 18 of the posterior density by introducing two innovations. The new method 19 fits a nonlinear conditional heteroscedastic regression of the parameter on 20 the summary statistics, and then adaptively improves estimation using im21 portance sampling. The new algorithm is compared to the state-of-the-art 22 approximate Bayesian methods, and achieves considerable reduction of the 23 computational burden in two examples of inference in statistical genetics and 24 in a queueing model. 25
منابع مشابه
abc: an R package for Approximate Bayesian Computation (ABC)
Background: Many recent statistical applications involve inference under complex models, where it is computationally prohibitive to calculate likelihoods but possible to simulate data. Approximate Bayesian Computation (ABC) is devoted to these complex models because it bypasses evaluations of the likelihood function using comparisons between observed and simulated summary statistics. Results: W...
متن کاملPseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملContributions to The Estimation of Mixed-State Conditionally Heteroscedastic Latent Factor Models: A Comparative Study
Mixed-State conditionally heteroscedastic latent factor models attempt to describe a complex nonlinear dynamic system with a succession of linear latent factor models indexed by a switching variable. Unfortunately, despite the framework’s simplicity exact state and parameter estimation are still intractable because of the interdependency across the latent factor volatility processes. Recently, ...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009